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Quasi-interpolant fumnctionals for L-splincs are constructed. With them as a
tool, an explicit construction of LB-splines is given, as well as a quick proof of the
existence and uniqueness of the expansion of an L-spline in an I.B-spline series.
Moreover. a necessary and sufficient condition for a function to generate a local
linear functional that vanishes at all 1"8 splines but one. is obtained.

I, ISTRODLCTION

We begin with some notations and definitions.
Let k E t := ((i) nondecreasing (finite. infinite or biinfinite) with

(i < (',A' all i. and let

Ii := max~m: (,. III = (,I.

d, := ci + Ii t 1.

jumpt/:= I((, +) -- lUi ).

Let H~(a. b) denote the space of functions which are k-fold integrals of
functions in L I'(a, b), 1 ~ P ~ 00. Further. let

A

L ~~ \. Pi DA .i

; I)

be a nonsingular kth order differential operator. where Po == I, Pi E C(a, b)
(j = I..... k) and D = d/dx. Then the formal adjoint operator of L is

i 0

By Nr and N, we denote the null spaces of Land L *. respectively.
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Throughout this paper we suppose that a basis of NJ . forms a locally
Extended Tchebycheff System, namely, that the following condition:

(ET) The sum of multiplicities of g's zeros does not exceed k - I on
IIi' Ii f k I for any nonzero g E N[. and any i

is satisfied.

DEFINITION 1.1. A function S defined on (a, b) IS called an L-spline
with knots t if

(i) SI(lj.lj.,) E N1i(lj.lj,,) for all i:

(ii) jump/jSI;') = 0 for all i and y < k - d,.

DEFINITION 1.2. li,jl is called the carrier of a nonzero L-spline Sand
j -- i is said to be its length if

(i)

(ii)

(iii)

S=Ooutside Ili,ljl:

J'ump SU) = 0 for" < k -1- I, but J'ump Sfk I, II"", 0:
Ii I I Ii

jumptiS(Y) = 0 for y < k - cj - L but jump/jSU "I I) "'" O.

It should be noticed that for a given nonzero L-spline S its carrier li,jl is
uniquely determined. For, if lil,f I also satisfies (i), (ii) and (iii), then first,
Ii = Ii' (otherwise, say, Ii> Ii" then (i) implies that jump/iS(;') = 0 for all y,
which conflicts with (ii)): second, (ii) yields i = i l

; similarly, j = jf.

DEFINITION 1.3. A nonzero L-spline S with minimum carrier is called an
LB-spline.

Here"S has a minimum carrier" means that there are no other nonzero L­
splines whose carrier is a proper subset of the carrier of S,

The purpose of this paper is to extend some results of polynomial B­
splines to LB-splines. In Section 2 we construct quasi-interpolant fUl1ctionals
for LB-splines. In Section 3 we give an explicit construction of LB-splines. In
Section 4 we obtain the expansion of an L-spline in an LB-spline series with
the quasi-interpolant functionals as a tool. In Section 5 we extend de Boor's
results about local linear functionals to LB-splines.

2. QUASI-INTERPOLANT

For a fixed integer i, let ,lim be the functional given by

,lim(f) = pm i 1)(t"J

=/(Cml(tm)

when m = i + I, ... , i + Ii:

when m >i -+- Ii + I. (2.1 )
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LEMMA 2.1. There exists a nonzero function uJ,) E N/ which satisjies

m=i+L. ... i+k-1.

Moreover, such a function is unique up to a constant factor.

Proof Let 1fJ1' 1fJ2 ,..., IfJk be a basis of N i , It is easily seen that the
function

satisfies

f.1i+ ,(IfJI)f.1i f 1(1fJ\)

)
f.1i+ ,(rp2)f.1i+ 2(1fJ2)

u;(x =

f.1,. k \(rp\) 1fJ,(x)

f.1i+k 1(!P2) 1fJ2(X)
(2.2 )

m = i + I, ... , i + k - 1.

We claim that

when x E Ui • Ii f \), j = i,... , i + k ~ 1.

Suppose to the contrary that there exists some x E (ti , tj , I)

U=i,...,i+k-l) for which ui(x)=O. Then we can find i"'Y2'''''Yk' of
which at least one is not zero, so that

j=i+ I, ...,i+k-I

and

Let rp = 1'1 qJ I + 1'2 IfJl + ... + h rpk' Then IfJ is not a zero function, and the sum
of the multiplicities of IfJ'S zeros exceeds k - I. This contradicts the condition
(ET).

Suppose now that another function v has the same property as Ui • We
have to show that there exists a constant c such that v = CUi' There are the
following two possibilities:

(i) t i < tiT J' In this case it follows from the condition (ET) that
Ui(t i ) * 0 and v(tJ * O. If we put C= t'(tJ/u;UJ, then the function
v - CUI E N/. and the sum of multiplicities of its zeros would exceed or equal
k, hence v - CUi = 0, that is, v = CUi'

(ii) t; = t; + I' Thus we know that U;'j)(t;) * 0 and V(/jJUi) * 0 in view of
the condition (ET). A similar demonstration gives that v = CUi for
c = v(/j)U;)/u;'j)(tJ
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The determinant on the right-hand side of (2.2) is abbreviated to

det (f1i+I,f1i+.2, ... ,f1 i+k-I' X ).

!PI' !p2' .. ·• !Pk-I,!Pk
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COROLLARY 2.1. If IfJ I' 1fJ2 ,.... IfJk is another basis of N c ' then there exists
a constant c such that

det (f1i+j,f1i+2, ... ,f1ilk-j,X)=c.det (f1i+I.f1. i+2 .... 'f1 i - k I'X). (2.3)
1fJ1' 1fJ2 ... ·' IfJk-I·lfJk !p!.!fJ2· .. ·'!fJk-I'!fJk

Now we consider Lagrange's Formula 191. If fE H~(a, fJ) and
g E H~(a. fJ), where lip + Ilq = I, then

<I (Lf)gdx = ( (L *g) fdx + W(f, g; x) I> -OC) < a <: fJ < 0), (2.4)

where

k

W(f,g;x):= \ ' U1Y-11(X)[Pk_y(X)g(x)[
r- O

- jlr- 21(x)iPk_/X )g(x))' + ...

+ (-If-lf(x)lpk_Jx)g(x)llr- 'I }. (2.5),

In particular, if f Iln.ill E N/ and g lIn .ill E N/, , then it follows from (2.4) that

W(f, g; a+) = W(f, g: fJ-)· (2.6 )

Taking an L-spline S as f and taking ui as g in (2.5), we have. for x E t,

k

W(S,ui;x)= \' ~SIY-II(X)lpk,,(X)Ui(X)1
- rr 0

- SIY- 21(x)1 Pk-/'<) ui(x) Ir

+ ... + (-IF jS(X)lpk_y(X)U;(X)]lr-II}. (2.7)

If t i < t m < litk' then

hence

W(S.Ui;t m +)= W(S,Ui;lm-)' (2.8 )



100 RONG-QING JlA

and W(S, ui ' t m ) is defined to have this common value. On the other hand.
we have, for any ~, II E (t i • t i k)\t.

Therefore.

\'

{, '0. (m<' 1/

[W(S, ui : 11/1 +) -- WIS. ui : 11/1 )[.

that is,

W(S, ui : 17) = W(S, ui : ~), (2.9)

In light of (2.8), (2.9) remains valid for ~ and/or 17 E (t i , [i. k) n t. We
conclude that W(S, ui : .) is identically equal to a constant in (t i' t i • k)'

DEFINlTION 2.1. By I(L: t) we denote the space of all L-splines with

knots t. The linear functional

(2.10)

which acts on the space I(L: t) is called a quasi-interpolant functional.

THEOREM 2.1. If S is an L-spline with 1m, nl as its carrier. Ihen

(10) A;S=O when m> i:

(2°) leiS =1= 0 when m = i:

(3°) leiS = 0 when n < i + k:

(4°) leiS =1= 0 when n = i + k.

Proof (10) If 11/1 > ti' we take ~ E (ti' [1/1)' then

leiS = WIS. ui : ~)= 0

since S == 0 on (t i , 11/1)' In the case of tl/1 = ti' from

it follows that

).;S = W(S. U i : [i +) == o.

(Y~) Suppose to the contrary that the statement Ai S = 0 holds. There arc
two cases:
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(i) tl < tl + I' Substituting W(S. III: ti +) = 0 and

S(t;) = S'(tl) = ... = Sik 21(t1) = 0

into (2.7). we obtain

101

but lI i(l i) * 0 in terms of the condition (ET) and 5 1k
I) (tl +) * o. so we get a

contradiction.

(ii) t i = t l4 ,. In this case.

S(t i ) = S'(t i ) = = Sik I j -2I(I;) = O.

lI i (tJ = 1I;(ti) = = 11;1, II(lJ = O.

Combining it with (2.7). we have

Sik-I,- !1(ti +) U;l j1(t;) = O.

which contradicts the fact that Sik 1,-II(t;) * 0 and ujljl(t j ) * O.
We can similarly prove (3°) and (4°).

COROLLARY 2.2. The length of any nonzero L-spline S is at least k.
In fact. if 1m. n I is the carrier of Sand n ~ m < k. then (2°) of Theorem

2.1 implies Am S * O. but (3°) implies Am S = O.

3. THE CONSTRUCTION OF LB-SPLINES

There are other papers which deal with the construction of LB-splines (cf.
Jerome and Schumaker 16 I). but the construction given here is particularly
suited for the development of the quasi-interpolant functionals. Further. we
emphasize that LB-splines are entirely determined by the operator L and are
independent of the choice of N[,'s basis.

LEMMA 3.1. If j!p I' !P2 ..... !Pk f is a basis in N[ " then there exists a basis
IXI.X2 ..... xd in N[ such that. for 1=0. I ..... j.

when j = O. 1..... k - 2:
when j = k - 1.

(3. I)

The functions (x;) are the adjunct functions for the (!PI); see 18: 6691. Let

k

- '"G(x. ~) - _ !Pi(~) xl,).
i 1

= o. x <~.

(3.2)
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Clearly, G(x, ~) is Green's function for the operator L with side conditions:

yea) = y'(a) = ... = yU -11(a) = 0, a (x,~.

Now we define functionals vm as follows:

v (f):= \f,mil(tm), m=i....,i+li ;
m /PCm)(tm)' m~i+li+ 1.

It is easily seen that

(3.3 )

Km(x) == vm(G(x, . )),

are L-splines. By (3. I) we have

(i) For m = i, ... , i + Ii'

Thus the function

V;(1p I) vi(Ip,)

M;(Ip, ,... , Ipk; x):= Vi t I(lpl) Vi f 1(1p,)

m = i, i + l,. ..

y < k - I - m + i;
Y= k - I - m + i.

)' < k - I - cm ;

y=k-l-c
lI1

•

Vi(lpk) vi(G(x, .)) I
Vi II(lpk) Vit I(G(X, .))

(3.4 )

is an L-spline with Ii, i + k I as its carrier. The M/s length equals k, but by
Corollary 2.2 the length of any nonzero L-spline is not less than k, so we
have already proved the main part of the following theorem.

THEOREM 3.1. M;(1p I' Ip, ,..., Ipk ; x) given by (3.4) is an LB-spline.
Moreover each LB-spline M can be represented as

M = const . Mi(lpl ,... , Ipk; .) for some i.

Proof Suppose M's carrier is [i,}]. By Corollary 2.2 we know } ~ i + k:
on the other hand, we have j - i (k by the definition of LB-splines, so
j = i + k. By Definition 1.2,

jump M 1k
1;- I) *' a

Ii I
and
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Then M - cM; would have a carrier which is a proper subset of li,jl.
Applying Corollary 2.2 again to this case, we have M - cM; = 0, that is,
M=cMi •

COROLLARY 3.1. For any two bases of Nr = 1Cfll , Cfl2 , ... , Cflk ~ and
:IJII ' 1J12 ,... , IJId, there exists a nonzero constant c such that

4. LB-SPLINE SERIES

It follows directly from Theorem 2.1 that

THEOREM 4.1. For i,j integers, let M; be an LB-spline with It;, t; j k I as
its carrier, and let Ai be a quasi-interpolant functional given by (2.1 Ol. Then

if and only if i = j.

COROLLARY 4.1. For any open set f, 1M;; supp M; n I =F 0 f is linearly
independent on f.

Proof Suppose

SUPP:\JinJ I-0

Letting the functional Ai = W(·, ui ;¢;), where ¢i E supp M; n f, act on the
foregoing equation, we obtain

(i= 0 for all i such that supp Min I '* 0.

COROLLARY 4.2. SUPP(L; YiM;) = UY;FO suppM;.

Proof The relation

supp 2.: YiM; c U supp M;
i'f lO
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is obvious. Conversely, suppose IE supp M i for some j. i'i * O. but I if:
supp Li ('iMi' Then we can choose some Ii inside supp M i so that
Ii if: supp Li YiMi' If we put Ai = We, U j : Ii)' then

hence Yi = O. which is a contradiction.
With the help of quasi-interpolant functionals we can obtain the following

existence and uniqueness theorem about LB-spline series expansion. The
proof is omitted here because it is similar to the proof in 131.

THEOREM 4.2. Any L-spline S can be represented as a series of LB­
splines:

moreover, this representation is unique.

5. LOCAL LINEAR FUNCTIONALS

It is remarkable that a series of important results about polynomial splines
and approximation theory could be obtained through de Boor's local linear
functionals (see 12 I). In this section we give a necessary and sufficient
condition that a function generate a local linear functional that vanishes at
all LB-splines but one. This extends de Boor's corresponding results (see
12, Lemma 3.1 I) to LB-splines.

DEFINITION 5.1. rf

\1 m. (5.1)

then we say that f"agrees with" g at t and write

f!t= glt,

Suppose, for i integers, M i are LB-splines, and ui are given by (2.2).
Without loss we may assume AiM j = bil' where Ai is given by (2.10). Let
11 := i + k - ci • k' Then

li~t" ,< t,,~- '" ~~Ii'k'
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Let
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We have

ut = 0, if t < (tn 1+ t,,)/2;

if t ~ (tn-I + t,,)/2. (5.2 )

THEOREM 5.1. hi E Lq(a, b) satisfies

all i,j,

([and only ([hi = -L*f for somefE H~(a, b) withfl
t
= ut It.

Proof "If' part. Supposefl t = u/ It. We have, for any L-spline S.

m~n-l, (5.3 )

and

In view of Lagrange's formula we have

(""I (L*f)Sdx= (m'l (LS)fdx- W(S,J;X)j1m.1
. 1m -'m 1m -+-

= W(S,J;t m +)- W(S,J;tm + I -),

hence

m~n. (5.4 )

I (L*f)Midx = \'

Ij<t m < 1m . 1 ("tj tk

Let us separate consideration of the following three possibilities.

(i) ti+k~tn-I' In this case, it follows from (5.3) and (5.5) that

but

W(Mj , f; t i +) = 0, (5.6 )

by (2.5) and the definition of LB-splines. so that J (L *f) Midx = O.
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(ii) t;/t". We have, similarly,

W(Mi,f - uj ; ti +) = 0,

We rewrite (5.5) as

I(L*f)M;dx

(5.7)

ti~tm< tm"-I <'1.1+ k

+ \'

The first sum is equal to zero by (5.4) and (5.7). To calculate the second
sum we resort to Lagrange's Formula and obtain

\' IW(M;,uj;tm+)~W(M;,Uj;tmf1-)1
f;<lm<t m . I <tj Ik

l ·lm " .1",.1 ~\' I (L *uJ M;dx - I (LM;l Yidx = O.
[;<tm<:tm_t<tilk -1 m '1 m

(5.8 )

(iii) t;+k> t"_l and t; < tIl' Thus t;~ (II 1< tIl ~ tj'k must occur. Let

\'

'j<tm<tm-i I<tj'k

where

E 1 :=
tj~tm<tmtl<tll I

(5.10)

E 2 := -W(M;,f - uj; t,,-) (5.11)

+ \' IW(M;,f~Ui;"m+)- W(M;,f-uj;lm.I-»)'
fn~tm<tmll<ti·k

t n <t m < t m t I <tj . k

It follows from (5.3), (5.4), (5.6) and (5.7) that

(5.12 )
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A demonstration similar to that in (5.8) gives

IW(Mj. ui ; tm +) - W(M j • U;; tm 11-)] = O.
{11~lm«m+l(li·":

Finally we have

that is.

This completes the proof of "if' part.
The proof of "only if' part is based on the following lemma.
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LEMMA5.1. (1°) If fU"(ts)=O (s=j.j+ 1, ... ,j+lj) and W(Mj l.j;
t; 1+)=0. thenfUj I)(tj 1)=0. .

(2°) If f(c')(tJ = 0 (s = j, j - 1,... , j - ej ) and W(Mj+l,j; tj+1-) = 0,
then f«'i+I)(tj+ I) = O.

Proof It suffices to prove (1°). because the proof of (2°) is similar. There
are two possibilities.

(i) t i I < t i • In this case.

so by (2.5) we have Mj~II)(tj_I+)f(tj_l)=W(Mj_1.j;tj_1+)=0; hence
j(tj I) = O.

(ii) lj 1= t j • Putting

and

in the place of the expression (2.5) for W(M j -I J; t j _ 1 +), we obtain
jU i 11(t) I) = O.

Now we proceed with the proof of the necessity. If hi E Lq(a, b) is such a
function that Jh;Mj = ~ii' all j, then there exists an fE H~(a, b) such that
-L*f=h;and

P')(tsl = 0,

j(C,)(t,) = u~C,)(t,),

s = i, i + 1.... , n - 1;

s = n..... i + k - I.

(5.13 )

(5.14 )
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To prove fit = ui It' that is to prove

pl')(IJ =°
fk"(IJ = u~(,)(t,)

for all s <n -- L

for all s ~ n,

(5.15 )

(5.16)

we proceed by induction on s. We only need to prove (5.16), because the
proof of (5.15) is similar. Suppose (5.16) is true for s such that n <s <} - I.
where j ~ i + k. Consider the integral Ji'vf i A(1- *f) dx. Calculate its val ue by
(5.9}-(5.12). It is easily seen that the contribution of 1.'] is zero. the
contribution of 1.'2 is - W(M j kJ - u;; I; -), and the contribution of E, is

-(j;,; k' On the other hand, JM i k(L*f)dx=-JM; kh j dx=--6 i .j k:
therefore,

Resorting to Lemma 5.1, we obtain

P,j)(tj) = U)'jl(ti)'

This completes the proof of the "only if' part and so of the theorem.

COROLLARy5.!. If [a,PIc;lli.li1kl, and iffEH~la.ljl salisjies Ihe
following conditions:

(i) prl (a)=O.;'=O,I..... k-l:

(ii) P") (fJ) = u~r)(fJ), y = 0, I..... k - 1:

(iii) Pl)(t) = 0. y = 0, L.... k - d j - 1 for Ii E (a./J);

Ihen hi determined by h; =-L *I has supporl Ia, PI and

I hJ'v1j=6uforallj.

6. REMARKS

!. As de Boor III pointed out. it is unnecessary to assume that (@;l' is a
Chebyshev system in order to construct L-splines of local support. Jerome
and Schumaker \61 did such a construction. Here. we shall follow de Boor
II] and give a brief description. For a fixed i, let f.1/11 be defined as in (2.1).
and let} ~ i + 1 be the least integer such that span(u i • ] ..... ,u) II N 7 * 0. If
(ET) holds, then} -- i = k; otherwise j - i < k. Thus there is (up to a
constant factor) one and only one L-spline with Ii,j I as its carrier. Since our
argument relies only on local properties of the operator L. most of the results



LOCAL LINEAR FUNCTIONALS FOR L-SPLINES 109

of this paper remain true without assumption (ET), except that some LB­
splines might have a carrier of length less than k.

2. The purpose of introducing "carrier" instead of "support" is to avoid
confusion. Such a confusion happens easily. For example, in 110,
Theorem 2.21, the statement that B i is the unique L-spline satisfying
Bi(x»O for Yi<x<Yi+m and Bi(x)=O for x<Yi'Yifm<x is not true.
For, if Yi = Yi I I <Yi. m= yi +m+ 1 then there are two linearly independent
LB-splines with Ii, i + In I and Ii + L i + In + 11 as their carriers, respec­
tively, but they have the same support I.v i ' Yi T mI! In this respect, I believe
that Definition 1.3 is the most appropriate.

3. In Section 3, I have no intention to give a "new" construction of LB­
splines. Such constructions have been made by several authors. Among
them. Karlin 171 and Jerome 151 are worth mentioning. In fact, as Theorem
3.1 states, any construction for LB-splines is substantially unique. Our
emphasis is placed on the role that local linear functionals play in spline
functions.

4. After I finished this paper. I was made aware of K. Scherer and L. L.
Sch umaker 1101. They treat the same subject as that here. Though my
approach to local linear functionals is more direct and explicit, they give
some applications which I have not touched on in this paper. There is some
hope that explicit numerical bounds for the norms of the linear functionals
will be obtained, at least when L is an operator with constant coefficients.
However. it would require more effort.
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